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Abstract. We study the two-pion propagator in the nuclear medium. This quantity appears in the ππ T -
matrix and we show that it also enters the QCD scalar susceptibility. The medium effects on this propagator
are due to the influence of the individual nucleon response to a scalar field through their pion clouds. This
response is appreciably increased by the nuclear environment. It produces an important convergence effect
between the scalar and pseudoscalar susceptibilities, reflecting the reshaping of the scalar strength observed
in 2π production experiments. While a large modifications of the σ propagator follows, due to its coupling
to two pion states, we show that the NN potential remains instead unaffected.

PACS. 11.30.Rd Chiral symmetries – 12.40.Yx Hadron mass models and calculations – 13.75.Cs Nucleon-
nucleon interactions (including antinucleons, deuterons, etc.) – 21.30.-x Nuclear forces

1 Introduction

The two-pion production experiments on nuclei [1–4] have
revealed a striking accumulation of scalar strength for
the 2π invariant mass near threshold, restricted to the
isoscalar channel for the two pions. Schuck et al. [5] and
Chanfray et al. [6] have predicted such effects on the basis
of the influence of the modification of the pion dispersion
relation in the medium on the scalar strength distribution.
The pion line is replaced by a pion branch, a collective
mixture of pions and ∆-hole states, which lies at lower
energies. It leads to a strength concentration near the 2π
threshold for the sigma meson which decays in two pions.
Other interpretations have been given in refs. [7–9]. Focus-
ing on the interpretation of refs. [5] and [6], one of our aims
is to establish the existence of a link, albeit not a straight-
forward one, between the softening of the scalar strength
and chiral symmetry restoration. The link goes as follows:
the enhancement of the ππ T -matrix near threshold arises
from the nuclear modification of the two-pion propagator.
This also affects the QCD scalar susceptibility, which will
be one of our topics.

Beside 2π states, the lowest excitations modes of the
vacuum which govern the scalar susceptibility can also im-
ply a genuine scalar-isoscalar meson, the so-called “sigma”
meson. These aspects can be incorporated in the linear
sigma model, with a σ chiral partner of the pion strongly
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coupled to 2π states. We will discuss how the propagation
of the sigma meson is affected by the modification of the
two-pion propagator.

In this model the sigma propagator governs the scalar
susceptibility. Our results thus have an implication for
the in-medium modification of this quantity. The nuclear-
matter susceptibility has previously been discussed in par-
ticular in refs. [10,11]. The results that we will derive here
for the susceptibility are in part implicitly contained in
ref. [11]. In order to display this link one has to isolate
in the nucleonic sigma commutator its pionic component,
as was indeed done in ref. [11]. But this was done for
another purpose (to single out the dominant pion cloud
contribution to the nucleonic scalar susceptibility) and the
link with the 2π production experiments did not naturally
emerge. Here we will show that the two-pion propagator
is a component of the sigma propagator which governs
the scalar susceptibility. This naturally provides the con-
nection to the ππ T -matrix. Moreover, we evaluate the
medium effects on the two-pion propagator to all orders
in density while in previous papers only the linear term in
density was included.

The other point that we will elucidate is the connection
with traditional aspects of the nuclear binding since the
strong in-medium reshaping of the scalar strength has a
priori consequences for this problem. Our discussion will
be based on the distinction, previously emphasized [12],
between the sigma, chiral partner of the pion, and the
scalar meson exchange of nuclear physics. We will show
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that the other component of the sigma propagator is re-
lated to the propagation of the chiral invariant s field
which enters the NN interaction. The s exchange part
of this interaction is thus totally disconnected from the
medium effects on the two-pion propagator, which has im-
plications for the in-medium NN interaction.

2 T-matrix, two-pion propagator and scalar

susceptibility in the medium

In the 2π production experiments the medium effects are
governed by the in-medium modifications of the T -matrix
for the ππ scattering. In the following we will study this
quantity in a chiral model, the linear sigma one. In fact
our results on the medium effects do not depend on the
scalar meson mass but essentially on the two-pion prop-
agator that could be obtained directly in the non-linear
sigma model. It is interesting, however, to keep a sigma
meson with a finite mass in order to establish link with
the binding properties of nuclei.

In this model the coupling of the σ to two-pion states
is a simple 3-point vertex, λfπ σπ

2, while the four-pion
interaction is λπ4/4. The coupling constant λ is related to
observables according to λ = (m2

σ − m2
π)/2f

2
π . The corre-

sponding s-channel contribution, Vs, to the ππ potential
at a given invariant squared mass s is the sum of a con-
tact term and a sigma exchange one. The same structure
also holds for the t and u channels. We use an approx-
imation suggested by the authors of ref. [13], who keep
only the s-channel term, dropping the t and u channel
contributions which enter with a smaller weight in the
isoscalar channel. These authors have shown that, within
a symmetry-conserving 1/N expansion (here N = 4) ful-
filling Ward identities, this is a legitimate approximation.
Within this simplified framework they were able to repro-
duce the ππ phase shifts and scattering length [13]. Then
the scalar-isoscalar potential reads

V = 6λ+ 12(λfπ)
2 1

s−m2
σ

= 6λ
E2 −m2

π

E2 −m2
σ

, (1)

being E =
√
s the total energy of the pion pair in the CM

frame.
The Lippmann-Schwinger equation with such a sep-

arable potential gives for the unitarized scalar-isoscalar
T -matrix

T (E) =
6λ(E2 −m2

π)

E2 −m2
σ − 3λ(E2 −m2

π)G(E)
, (2)

which in the limit of large sigma mass reduces to (assum-
ing zero three-momentum for the pion pair)

T (E) = − 3(E2 −m2
π)/f

2
π

1 + 3(E2 −m2
π)/(2f

2
π)G(E)

. (3)

Here G(E) is the two-pion propagator for zero three-
momentum of the pion pair, linked to the single-pion prop-
agator Dπ by

G(E) =

∫

dq

(2π)3

∫

idq0
2π

Dπ(q, q0)Dπ(−q, E − q0). (4)

The expression of T (E) given in eq. (2) holds either in
the vacuum or in the medium. In the last case the pion
propagators which enter G are dressed by particle-hole
bubbles, where the particle is either a nucleon or a Delta.
This is responsible for the modification of the T -matrix
in the medium and, in the interpretation of refs. [5,6,14],
explains the features of the data.

We now come to the link with the chiral symmetry.
The two-pion propagator is the correlator of a scalar quan-
tity, the squared pion field. On the other hand, the order
parameter for the spontaneous breaking of the chiral sym-
metry is another scalar, the quark condensate, that we de-
note 〈q̄q(ρ)〉 in the nuclear medium, whereas ∆〈q̄q(ρ)〉 is
the variation with respect to the vacuum. The QCD scalar
susceptibility, defined as the derivative of the quark con-
densate with respect to the quark mass, is the correlator
of the fluctuation of the quark scalar density. We define
the nuclear value χAS as the difference with the vacuum
quantity

χAS (ρ) =
d

dmq

∆〈q̄q(ρ)〉. (5)

One can expect a link between the two scalar correla-
tors: the QCD susceptibility and the two-pion propa-
gator. Indeed, a major contributor to chiral symmetry
restoration is the nuclear pion cloud. In the non-linear
sigma model this is the only agent for restoration. Each
pion of the cloud contributing to the restoration by an
amount proportional to the sigma commutator of the pion,
Σπ = mπ/2, the pionic participation to the restoration
is expressed in terms of the pion density in the cloud,
mπ〈Φ2〉, according to [15]:

∆〈q̄q(ρ)〉 = −〈q̄q〉vac
〈Φ2〉
2f2

π

. (6)

The quantity 〈Φ2〉 is related to the pion propagator Dπ(q)
by

〈Φ2〉 = 3

∫

id4q

(2π)4
[Dπ(q)−D0π(q)]

= 3

∫

id4q

(2π)4

[

1

q2 −m2
π − Sπ(q)

− 1

q2 −m2
π

]

. (7)

In the expression above the vacuum value of the pion prop-
agator D0π(q) is subtracted out in order to retain only
medium effects andDπ(q) is related to the pion self-energy
Sπ(q), which includes an s-wave, Ss, and a p-wave part,
Sp. The second piece arises from the p-wave excitations of
particle-hole, yielding a three-momentum–dependent cou-
pling of the pion. It does not depend explicitly on the pion
mass, while the s-wave one does.

For the evaluation of the susceptibility the derivative
with respect to the quark mass is replaced as usual by
the one with respect to the pion mass squared. We ignore
the derivative of the s-wave potential which leads to small
corrective terms. With this approximation we obtain a
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Fig. 1. Influence of the nucleonic pion cloud on the two-pion
propagator. For the susceptibility the quark fluctuation is at-
tached at each point.

simple expression for the susceptibility

χAS (ρ) =
〈q̄q〉2vac
f4
π

d

dm2
π

〈Φ2〉

= 3
〈q̄q〉2vac
f4
π

∫

id4q

(2π)4
[

D2
π(q)−D2

0π(q)
]

= 3
〈q̄q〉2vac
f4
π

∆G(0), (8)

which is proportional to ∆G(0), the in-medium modifica-
tion, at E = 0, of the two-pion propagator, the quantity
which governs the modification of the ππ T -matrix.

In order to illustrate the significance of this contribu-
tion we first consider a single insertion of a nucleon-hole
bubble (namely Π0

N ) into one of the two-pion lines (see
fig. 1). The corresponding medium correction reads

χAS (ρ) = 3
2〈q̄q〉2vac
f4
π

∫

id4q

(2π)4
D0π(−q)D2

0π(q)q
2Π0

N (q).

(9)
The physical interpretation follows from fig. 1: this

medium correction introduces the effect of the individual
nucleonic susceptibility from their pion clouds. Note that
the Pauli-blocking effect is implicitly contained through
the quantity Π0

N . Ignoring it, the contribution to the
scalar susceptibility is ρsχ

N
S (π), where ρs is the nucleon

scalar density and we have denoted χNS (π) the free-nucleon
susceptibility from its pion cloud. This quantity was dis-
cussed by Chanfray et al. [11] who showed that it dom-
inates the nucleon response and who evaluated it in the
static approximation: χNS = −4.10−2 MeV−1.

In the description above we have considered in the two-
pion propagator the dressing of a single-pion line by only
one bubble. If instead we introduce in the two-pion prop-
agator the full RPA pion propagator in the ring approxi-
mation, the contribution to the nuclear susceptibility can
be written as ρsχ̃

N
S , with an in-medium–modified, density-

dependent nucleonic scalar susceptibility χ̃NS . The relation
between ∆G and χ̃NS is

3∆G(0) =
ρsχ̃

N
S f

4
π

〈q̄q〉2vac
. (10)

At ρ0 it happens that 3∆G(0) ' χ̃NS , if χ̃NS is expressed
in MeV−1. For its evaluation we proceed as follows. First,
the complete bare polarization propagator Π0 is the sum
of the nucleon-hole polarization propagator Π0

N (q) and of
the Delta-hole one, namely

Π0
∆(q, ω)=

4

9

(

gA
fπ

)2(

gπN∆

gπNN

)2

F 2(q, ω)

∫

dk

(2π)3
θ(kF−k)

×
(

1

ω+εk−ε∆,k+q+iΓ∆(k+q, ω)
− 1

ω+ε∆,k−q−εk

)

, (11)

where gπNN (gπN∆) is the πNN (πN∆) coupling con-
stant, F (q, ω) is the form factor at the πNN or πN∆ ver-
tex and Γ∆ is the Delta width (taken following ref. [16]).
Moreover, we have defined εk = k2/2MN and ε∆,k =
M∆ −MN + (k2/2M∆).

The (p-wave) pion self-energy is linked to the fully

dressed polarization propagator, Π̃, solution of the RPA
equations in the ring approximation, as follows:

see eq. (12) on next page

where g′NN , g′∆∆, g
′

N∆ are the Landau-Migdal parameters
for the NN channel, for the ∆∆ one and for the mixing
of NN and ∆N excitations, respectively.

Inserting this expression of the pion self-energy into
the two-pion propagator of eq. (8) we obtain the nuclear
susceptibility, hence the effective nucleonic one. It is inter-
esting to compare the effective and the free-nucleon sus-
ceptibilities. For the last quantity we want to avoid the
static approximation of Chanfray et al. [11]. We can use
the same expression (8) in the dilute limit, ρ → 0, so as
to eliminate the influence of the medium on the suscepti-
bility.

We have also introduced another method starting from
the general expression of the pion density in terms of the
spin-isospin longitudinal response function, RL, as given
in ref. [17],

〈Φ2〉 = 3ρ

A

∫

dq

(2π)3

×
∫

∞

0

dω

(

1

2ω2
q (ω + ωq)2

+
1

2ω3
q (ω + ωq)

)

RL(q, ω) (13)

with ωq =
√

q2 +m2
π. The response RL is

RL(q, ω) = −
V

π
ImΠL(q, ω)

= −V
π
Im

(

q2Π̃(q, ω)
ω2 − ω2

q

ω2 − ω2
q − q2Π̃(q, ω)

)

. (14)

Inserting this expression (13) of 〈Φ2〉 into the quark con-
densate of eq. (6) and taking the derivative with respect
to the pion mass squared gives the nuclear susceptibility.
Expression (13) holds in the dense case as well as in the
dilute limit, i.e., for an assembly of independent nucleons.
In the latter case the expression of the response simplifies
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Sπ(q, ω) = q
2Π̃(q, ω) = q

2Π
0

N (q, ω) +Π0

∆(q, ω)− (g′NN + g′∆∆ − 2g′N∆)Π
0

N (q, ω)Π0

∆(q, ω)

[1− g′NNΠ
0

N (q, ω)][1− g′∆∆Π
0

∆(q, ω)]− g′2N∆Π
0

N (q, ω)Π0

∆(q, ω)
, (12)

Table 1. The effective nucleonic scalar susceptibility in unit of 10−2 MeV−1 at normal nuclear-matter density compared to the
free-nucleon one (zero-density column) for different values of Λ and for two values of (gπN∆/gπNN )2 (corresponding, respectively,
to the current nuclear phenomenology and to the constituent quark model) and g′N∆ = g′∆∆ ≡ g′∆. The parameter g′NN is kept
at the fixed value g′NN = 0.7.

Λ MeV ρ = 0 g′∆ = 0.4 g′∆ = 0.5 ρ = 0 g′∆ = 0.4 g′∆ = 0.5

5 mπ −5.5 −7.3 −6.5 −5.0 −5.9 −5.4

800 −6.0 −8.8 −7.7 −5.4 −7.0 −6.4

900 −6.4 −10.0 −8.7 −5.8 −7.8 −7.0

1000 −6.7 −11.3 −9.6 −6.1 −8.6 −7.3

( gπN∆
gπNN

)2 = 3.8 ( gπN∆
gπNN

)2 = 72/25

to

RL(q, ω) =

(

gA
fπ

)2

q2F 2(q)

×
[

δ(ω − εq)−
1

π

4

9

(

gπN∆

gπNN

)2

Im
1

ω − ε∆,q + iΓ∆

]

(15)

and the expression of the free-nucleon susceptibility be-
comes

χNS = − 3

16π2

〈q̄q〉2vac
f4
π

(

gA
fπ

)2 ∫ ∞

0

dq q4F 2(q)

×
{

3ε2q + 9εqωq + 8ω2
q

2ω5
q (εq + ωq)3

+
4

9

(

gπN∆

gπNN

)2 ∫ ∞

0

dω

×
[

3ω2+9ωωq+8ω2
q

2ω5
q (ω + ωq)3

]

(

− 1

π
Im

1

ω−ε∆,q+iΓ∆

)

}

. (16)

We have checked numerically that the first method
converges to this free-nucleon result in the dilute limit.
Table 1 shows the results obtained. The free-nucleon sus-
ceptibility calculated from eq. (16) is displayed in the col-
umn ρ = 0, while the other columns display the effective
ones at normal nuclear-matter density. The free value de-
pends on the parameter Λ entering in the monopole form
factor F (q) = Λ2/(Λ2 + q2). The effective one depends
in addition on the πN∆ coupling constant and on the
Landau-Migdal parameters. We have explored the depen-
dence on these parameters. In all cases the magnitude of
the susceptibility is appreciably increased as compared to
the free one, i.e., the Pauli blocking is overcompensated
by the effect of the increase of the pion propagator in the
medium. The enhancement of the effective susceptibility
is more pronounced with a harder form factor or with
smaller Landau-Migdal parameters.

Figure 2 displays the evolution with density of the ef-
fective nucleon susceptibility, χ̃NS (π), for a given choice
of parameters. As expected it converges to the value of
eq. (16) in the ρ → 0 limit. Beyond the normal density
the increase with density of the effective susceptibility be-
comes rapid.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

ρ/ρ
0

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

|χ
S
| (

M
e
V

-1
)

Fig. 2. Density evolution of the scalar susceptibility with the
following choice of the parameters: Λ = 900MeV, ( gπN∆

gπNN
)2 =

3.8 and g′∆ = 0.4. The point at ρ = 0 is calculated from eq. (16).

The modification of the scalar susceptibility is linked
to chiral symmetry restoration. In the phase of sponta-
neously broken symmetry the susceptibility is split in two,
the “parallel” one, which is the scalar, and the “perpendic-
ular”, which is the pseudoscalar one [10]. The second one
is infinite in the absence of explicit breaking, i.e., in the
limitmπ = 0. The scalar susceptibility instead is driven by
hard modes (sigma, two-pion etc.) and it is much smaller
in magnitude. As the two susceptibilities merge in the re-
stored phase a convergence between them might be a sig-
nal of a partial chiral symmetry restoration. A confirma-
tion of this conjecture needs a study of the evolution with
density of the susceptibilities up to the transition point,
which is beyond the scope of this phenomenological work.

With increasing density the pseudoscalar susceptibil-
ity decreases (in magnitude) since, as was established in
ref. [10], it follows the quark condensate with

χPS(ρ) =
〈qq(ρ)〉
mq

and χPSvac =
〈qq〉vac
mq

. (17)
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At ρ0 it has decreased by ' 35%. On the other hand, we
have seen that the presence of the nucleons which respond
through their pion clouds contributes to the increase of the
scalar susceptibility by (in unit of the vacuum value of the
pseudoscalar susceptibility)

χAS
χPSvac

=
ρSχ̃

N
S mq

〈qq〉vac
. (18)

At ρ0 it turns out that numerically this ratio is just χ̃NS ,
with χ̃NS expressed in MeV−1, which represents a non-
negligible ' 8–10% convergence effect. We remind in this
respect that there exists another and larger factor of con-
vergence which was studied in ref. [12]. The conversion
of the quark fluctuation density into nucleonic ones, i.e.
the effect of the low-lying nuclear excitations on the QCD
scalar susceptibility, produces an additional enhancement
of the magnitude of the susceptibility, which at ρ0 can be
expressed in our unit as

χAS (ρ0)/χPSvac ' 9ρ0Σ
2
N/(f

2
πm

2
πK), (19)

where K ' 250MeV (close to the free Fermi gas value)
is the incompressibility factor of nuclear matter and ΣN

the nucleon sigma commutator. It neglects the relativistic
effects at ρ0, in such a way that the nuclear responses to
scalar or vector probes can be taken as identical. More-
over, this result assumes that the nucleon sigma commu-
tator is not renormalized in the medium. The value of this
ratio is ' 0.56. A more elaborate evaluation by Chanfray
et al. [18], which takes into account in particular medium
effects in the conversion coefficient, gives for the ratio
χS(ρ0)/χPSvac a value ' 0.35. Adding the two sources
of modification and neglecting the vacuum value of χS
which is small and depends on the uncertain sigma mass
(as a magnitude order χSvac/χPSvac ' 0.05), the scalar
susceptibility at ρ0 is

χS(ρ0)/χPSvac ' 0.45, (20)

while the pseudoscalar one in the same units is ' 0.65.
The two susceptibilities which are drastically different in
the vacuum become nearly equal in ordinary nuclear mat-
ter, a remarkable convergence effect. The reason for the
large increase of the scalar susceptibility as compared to
its vacuum value is the spectrum of scalar excitations in
the nuclear medium. It encompasses nuclear states and
also two–quasi-pion states which extend at lower energies
than the bare two-pion states.

With increasing density the contribution of low-lying
nuclear excitations to the scalar susceptibility does not
increase further and even decreases, as the nuclear scalar-
isoscalar response becomes collective with a repulsive
residual force [19]. On the other hand, the one from the
pionic excitations of the nucleons continues to increase,
due to the rapid increase of the effective nucleon suscep-
tibility. The overall effect leads a smooth behavior (up to
ρ ∼ 1.6ρ0). For instance, with the evaluation of ref. [18]
for the nuclear part, the overall susceptibility at ρ = 1.6ρ0

becomes χS(1.6ρ0)/χPSvac ' 0.47, quite close to its value
at ρ0.

3 Sigma propagator and nuclear-physics

implications

In nuclear physics the attraction is attributed in part to
the exchange of a scalar field between nucleons. The previ-
ous description of the T -matrix in the linear sigma model
incorporates a scalar sigma field, chiral partner of the pion.
It is then interesting to rewrite the T -matrix in the fol-
lowing form which displays the propagator of the sigma
field, Dσ, with the inclusion of its coupling to 2π states:

T (E) =
6λ(E2 −m2

π)

1− 3λG(E)
Dσ(E),

Dσ(E) =

(

E2 −m2
σ −

6λ2f2
πG(E)

1− 3λG(E)

)

−1

. (21)

The physical interpretation of this expression is clear:
the σ propagator incorporates its coupling to 2π states
dressed by all rescatterings processes which are driven ex-
clusively by the 4π contact interaction. At E = 0 we have

−Dσ(0) =
1

m2
σ + 3λ(m2

σ −m2
π)

G
1−3λG

=
1− 3λG

m2
σ − 3λm2

πG

' 1

m2
σ

− 3λG

m2
σ

. (22)

The medium correction to Dσ from the coupling of the σ
to 2π states is

∆Dσ(0) =
3∆G(0)

2f2
π

, (23)

which represents at ρ0 a correction of ' 4 · 10−6 MeV−2.
For comparison, the bare vacuum value with a sigma mass
of 700MeV is ' 2 ·10−6 MeV−2, smaller than the medium
contribution.

Notice that without the ππ rescattering correction the
numerical value of ∆G at ρ0 is such that the denominator
in the expression of Dσ (eq. (21)) would be negative. The
existence of a singularity in the σ propagator implies an
instability with respect to a 2π isoscalar soft mode, which
was discussed by Aouissat et al. [20]. These authors have
argued that the pion rescattering effect (due to the 4π
contact term) in the sub-threshold region could eliminate
the instability, as is the case in our expression (21) at
E = 0.

We have seen above that the large polarization of the
nucleon through the pion cloud has a large effect on the σ
propagation. The following question naturally arises: is the
large medium modification of the σ propagator reflected in
the NN interaction? At first sight it is natural to believe
that the scalar NN potential is affected in the same way
as the σ propagator, which would lead to strong many-
body forces. The answer to the question is closely related
to the problem of the identity between the scalar meson
responsible for the nuclear binding and the sigma, chiral
partner of the pion. The pure identity between the scalar
meson which contributes to the nuclear binding and the
chiral partner of the pion is excluded by chiral constraints,
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emphasized by Birse [21]. It would lead to the presence of
a term of order mπ in the NN interaction, which is not
allowed. Nevertheless, it is possible to describe the NN
attraction in the linear sigma model as showed by Chan-
fray et al. [12]. By going from Cartesian to polar coordi-
nates, these authors introduced a new scalar field called
S = fπ + s. This field is associated with the radius of the
chiral circle and it is a chiral invariant while the σ field
is not. They suggested that the scalar meson of nuclear
physics should be identified with this new scalar field.
The justification will be given later. More precisely, the
nuclear attraction arises from the mean (negative) value
s̄, and the effective nucleon mass is M ∗

N =MN + gS s̄. Ac-
tually, this new formulation transforms the original linear
realization of chiral symmetry into a non-linear one. Con-
sequently, chiral constraints are automatically respected,
as those mentioned by Birse. Moreover, the coupling con-
stant of the s field to the nucleon, gS = MN/fπ ' 10,
is not incompatible with the phenomenology of quantum
hadrodynamics [22].

The passage to polar coordinates cannot affect the
physics. For instance, the T -matrix for on-shell pions must
be independent of the representation. It is therefore inter-
esting to rewrite it in a form which displays the propagator
of the s field, the relevant quantity for nuclear physics. For
this purpose we now express the Lagrangian of the linear
sigma model in terms of the polar coordinates, i.e., the s
field and the new pion field φ which is directly related to
the chiral angle, being

σ = (fπ + s) cos

(

φ

fπ

)

, ~π = (fπ + s)φ̂ sin

(

φ

fπ

)

.

(24)

This Lagrangian has been given in [12] and we restrict
ourselves to pieces relevant for our purpose. We first note
that the bare masses for the s and σ fields are the same.
For the 4π contact term we recover the standard non-
linear sigma model result with contain derivative terms.
In addition, we get a sππ coupling piece of the derivative
type which contains

L =
s

fπ

(

∂µ~φ · ∂µ~φ−
1

2
m2
πφ

2

)

. (25)

As an illustration, summing contact and s exchange pieces
the Born amplitude reads

V (E) =
6

f2
π

(

−(E2 −m2
π) +

(E2 −m2
π)

2

E2 −m2
σ

)

(26)

which reproduces the previous result of eq. (1), as ex-
pected; only the decomposition has changed. The same
holds for the T -matrix. The interest lies in the identifi-
cation of the propagator Ds of the chiral invariant scalar
field s. We rewrite the T -matrix in a form which displays
the coupling, E2−m2

π, of the s field to two pions and the
ππ rescattering through the new contact interaction (first

σ σ σ
π π

b

σ

π π
a

c

+=

π π

+ O(mT

s
)

π

2

Fig. 3. a) Compensating contributions to the πN amplitude
with pseudo-scalar coupling; the blob represents the NN̄ in-
termediate state. b) Corresponding compensation in the NN
interaction leading to the suppression of the 2π dressing of the
σ propagator. c) Resulting NN potential with undressed σ ex-
change, i.e. s exchange, and correlated two-pion exchange with
in-medium modified ππ T -matrix (here the intermediate states
are nucleon or ∆ ones).

term of eq. (26)). This new decomposition reads

T (E) =
6λ(E2 −m2

π)

1 + 3

2f2
π

(E2 −m2
π)G(E)

Ds(E)

Ds(E) =

(

E2 −m2
σ −

3

2f2
π

(E2 −m2
π)

2

× G(E)

1 + 3

2

E2
−m2

π

f2
π

G(E)

)

−1

. (27)

We consider the zero-energy case, E = 0, and compare
the propagators of the s and σ fields. They differ in an
essential way with respect to their coupling to two pions.
For the s, the coupling vanishes in the chiral limit, hence
it is small and it can be ignored, while it is large for the
σ. This difference is due to the chiral invariant character
of the s field. As the NN scalar potential is linked to the
exchange of the s mode, it is not modified by the medium
effects discussed previously, which affect the σ propagation
through its coupling to 2π states.

We now come to the justification of the identifica-
tion of the nuclear attraction with the s field exchange.
The physics cannot depend on field transformation from
Cartesian to polar coordinates. Hence, the same conclu-
sion about the stability of the NN potential should be
reached also in the original linear formulation. In this
case the nucleons exchange a σ with its ππ dressing but
the consistency of the model also implies other exchanges
with resulting delicate compensations [23]. Their origin is
the well-known pair suppression, in the case of pseudo-
scalar coupling, by σ exchange for the πN amplitude. As
depicted in fig. 3b, this translates into the elimination of
the sigma dressing in the NN interaction. We have ex-
plicitly checked that this cancellation holds to all orders
in the dressing of the sigma. The net result amounts to
the exchange of the s mode and hence to the identification
of Chanfray et al. [12]. Their formulation provides a very
economical way to incorporate all the cancellations inher-
ent to the linear realization, and hence the requirements of
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chiral symmetry. In addition to s exchange it is clear that
the standard correlated two-pion exchange with pseudo-
vector πNN coupling remains (see fig. 3c). It undergoes
the medium modifications of the ππ T -matrix discussed
in sect. 2. This effect has been worked out in [24]. The
overall change of the NN potential depends very much
on the relative weight of the two components, s exchange
and correlated 2π exchange, i.e., on the sigma mass.

4 Two components description of the σ

propagator and conclusion

In this last section we perform the separation of the σ
propagator into two components which are weakly coupled
to each other. The decomposition reads

Dσ(E) = Ds(E) +
3

2f2
π

(

1− 2
E2 −m2

π

E2 −m2
σ

)

G̃(E), (28)

where G̃ is the fully dressed 2π propagator which obeys
the equation

G̃ = G+
1

2
GV G̃, (29)

where V has been given in eq. (1). The physical interpre-
tation of the relation (29) is simple and it is illustrated
in fig. 4. The sigma propagator contains three parts: first,
the dressed s propagator derivatively coupled to two-pion
states (fig. 4a), second, the fully dressed two-pion prop-
agator (fig. 4b) and third, a mixed term with a bare s
propagator D0

s = (E2−m2
σ)

−1 coupled to a fully dressed
two-pion states (fig. 4c). The two-pion propagator is the
only piece which survives when mσ becomes infinite. To
order m2

π, the medium effects that we have introduced in
this work appear only in the two-pion component. In the
NN interaction, we have shown that this two-pion com-
ponent (taken at E = 0) does not enter and only the first
one is active and to order m2

π is not renormalized.
In summary, the unifying theme of the present work

has been the question of the two-pion propagator in the
nuclear medium. It is modified by the dressing of the pio-
nic lines by particle-hole bubbles. The 2π propagator ap-
pears in many problems. One of them, already explored,
is related to the 2π production experiments on nuclei. It
enters through its influence on the ππ T -matrix and its
nuclear modification is responsible for the softening of the
scalar strength observed in these data [25–27].

In the present work we have focused on the case of
zero four-momentum for the two-pion propagator since
this kinematical situation corresponds to the problem of
the QCD scalar susceptibility. Here the dressing of the
pion lines by p− h bubbles introduces in the nuclear sus-
ceptibility the response of the individual nucleons to a
change of the light quark mass. This response is domi-
nated by the nucleon pion cloud. As the cloud is polarized
in the medium we have shown that this response under-
goes a large renormalization in the sense of an enhance-
ment of its magnitude, which can reach typically ' 50% at

b ca

σ s π π π π
s

= + +

Fig. 4. Decomposition of the dressed σ propagator into: a) the
dressed s propagator, b) the dressed two-pion propagator and
c) the mixed term with a bare s propagator and a dressed
two-pion one.

ρ = ρ0. The contribution of the nucleon scalar susceptibil-
ity brings the nuclear one closer to the pseudoscalar one.
Thus, the nuclear pions have a double role in the restora-
tion effects: first, they participate in the decrease of the
quark condensate, i.e. also of the pseudoscalar suscepti-
bility which follows the condensate. In addition through
the softening of the scalar strength they increase the
scalar susceptibility, thus participate further in the conver-
gence between the two susceptibilities, which then become
nearly equal at the ordinary density, a remarkable conver-
gence effect which signals chiral symmetry restoration.

There is indeed a message about chiral symmetry
restoration contained in the 2π production experiments on
nuclei. A softening of strength, as is observed, naturally
translates into an increase (in magnitude) of the corre-
sponding scalar susceptibility, which is the inverse energy
weighted sum rule.

Another quantity to be influenced by the 2π propaga-
tor is the propagator of the sigma meson, chiral partner
of the pion, which is coupled to two-pion states. We have
shown that, at zero four-momentum, the change of the 2π
propagator in the medium produces a major modification
of the σ propagator which can triple its magnitude.

Our next step has been the investigation of the con-
sequences for the NN interaction in the nuclear medium.
The scalar meson responsible for the nuclear attraction
cannot be the previous sigma meson, but it has to be a
chiral invariant scalar field. We have shown in a previ-
ous work that such an object can be found in the linear
sigma model, being related to the fluctuation of the ra-
dius of the chiral circle. Contrary to the σ this invariant
field is weakly coupled to the pion. Therefore, it does not
undergo the large medium modification of the σ, insur-
ing the stability of the corresponding s exhange of the
NN interaction in the nuclear medium. In a forthcoming
work we plan to incorporate also the pion loops on top of
our hadrodynamic mean-field description of the nuclear
binding [10]. This will allow the systematic inclusion of a
correlated two-pion term with its in-medium modification.
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